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The working paper shows that the thermal equilibrium between incoming insolation and the 

outgoing black body (BB) radiation results in a surprisingly high temperature of the surface 

(skin) temperature. The classical explanation of heating the otherwise freezing planet by 

greenhouse gasses as water vapour, is far too simple. Much more is going on. Due to the opacity 

of the atmosphere for IR radiation, explaining the window for IR radiation observed by satellites, 

the temperature can rise even above the boiling point of water without additional cooling. That is 

already a remarkable result.  

A cooling mechanism is necessary to get the temperature in accordance with the observations. 

The incoming insulation
1
 and outgoing BB must be cooled to a daily averaged temperature  Taver 

corresponding to the observations. In the paper the cooling is represented mathematically by an 

attractor function known from complexity theory (or chaos theory). The function is (see 

discussion around equation 4 in paper): 

Wec = Wc (T
n/Td   - 1), with 1 ≤ n<<2  ,with variable T and parameter Td in degree C. 

The function is representing the very complex physics of the cooling processes. This cooling is 

referred to as the wind-water effect. 

The SDC algorithm coded as a MS Excel spreadsheet has been recoded into Python 3 scripts, 

which has two main advantages. The diurnal cycle can be extended beyond five days to an 

arbitrary number of days. Secondly the trial and error approach of finding the parameters of the 

attractor function can be incorporated into a Python (recursive) algorithm. The algorithm 

converges rapidly and results into an estimation of Wc given Td. The requirement is that the 

diurnal cycle is in “balance”, meaning the temperature difference at the beginning of the two last 

days is below a given very small threshold. 

Another intriguing result of the paper is the outcome of the change in temperature due to increase 

of the opacity with a factor 0.01  (e.g. representing  a doubling of CO2, see also chapter 21). For 

the clear sky situation (g = 1, see the paper for 30 N day 81 in chapter 21) 

 f g rWW Taver ∆rWW ∆Taver 

Balanced 0.68 1.0 106.4716 23.30002   

Unbalanced 0.69 1.0 108.6599 23.63679 2.1883 0.336774 

Balanced 0.69 1.0 110.3982 23.30009 3.9266 7.0E-5 

 

By introducing “clouds” for 5 days (reducing both the insolation and  the atmospheric window) 

(arbitrarily chosen values are: g = 0.4, f = 0.9), we see a similar result: 

 

 f g rWW Taver ∆rWW ∆Taver 

Balanced 0.90 0.4 53.5835 23.30010   

Unbalanced 0.91 0.4 54.9272 23.38286 1.3437 0.08275 

Balanced 0.91 0.4 57.5102 23.30014 3.9267 0.00013 

                                                 
1
 R. Clark, Private Communication, 2017.  Solar flux calculations based on IEEE Standard 793 ‘IEEE 

Standard for Calculating the Current-Temperature Relationship of Bare Overhead Conductors’ IEEE, 
June 1993. Clear Atmosphere Coefficients, page 13. 
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Two things can be observed for this example. As expected the required cooling is smaller with 

clouds than in clear sky. The ∆rWW due to increase of opacity is however not different between 

clear sky and clouds, while the increase in temperature is neglectable in both cases. The impact 

of a change in opacity is apparently only affecting the required rWW with a value of around 4 

W/m2, and not the temperature. 

We may wonder if we can define more general mathematical conditions for that attractor 

function. The function depends of course on the temperature.  

There are three obvious options for the function: 

1) Function has a constant value: 

If Wec = constant during the day, the cooling is enough to reduce the heat to the 

observable. The diurnal cycle is soon in balance, especially on land conditions. The 

constant is found by trial and error. 

2) Arbitrary function without zeros. That will work if the (diurnal) average of Wec is 

equal to the constant cooling of option 1) 

3) Function with Zeros: That will work if the zeros are far away of the observed 

temperature, and with the condition that the function average over last day, is again the 

constant defined in 1) 

The attractor function used in the paper is an example of option 3. 

If n is zero, we fall back on option 1). If n > 1, the zero shifts more towards T = 0 C, but no 

major difference from the case if n = 1. 

Investigating the Wec function as function of Td, a complication is that Td = 0 must be avoided. 

That coordinate singularity results in very large values for Wec. 

In Figure 1 the dependency of Td is plotted using the above recursive algorithm for Wc. The Wec 

function is zero when T is Td, while the averaged Wec is constant. That indicates a singularity in 

Wc as function of Td, nicely shown in Figure 2. 

The observed temperature of 60 N day 81 according to Table III of the paper is 4.1 C. Hence Wec 

as function of Td has a zero point for T = Td ≈ 4.1. If the daily temperature is varying mainly 

around T = 4.16, the Wc must be very large to generate a Wec of 1.5858 W/m
2
. If Td is far away 

of observed temperature, the singular behaviour is not occurring. The coordinate singularity near 

Td = 0 C is visible too.  

If Wc becomes very large near the singularity, the varying daily temperature becomes instable 

(because no Wec can be generated with a value of 1.58 W/m
2
). The attractor Wc function fails to 

“deliver” the cooling required near a zero point. Worse the temperate change due to Wec on time 

t + ∆t is much larger than at time t, and T diverges rapidly as function of time. At the other hand, 

when Td  is not near 4.16, the averaged Wec is independent of Td. 
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Figure 1 Averaged Wec as function of Td for 60 N day 81 (ocean with n = 1). Td in steps of 0.25 

between -5.1 and 20.1 C. Anomalous values (> 2.0) around Taver of 4.1 are removed from plot ( 

see also Figure 2). Note the “constant” value of Wec (averaged)  ≈ 1.5880. 
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Figure 2. Wc as function of Td  for 60 N day 81around the singularity near T ≈ 4.16 Wc is 

positive for Td < 4.16 C  and negative for Td > 4.16 C. Note extreme large values of Wc > 2000 

near the singularity are removed from plot. Large negative values are seen for Td  ≈ 0. 

Physicists have a hate-love relation to complexity theory. They prefer in general a reductionistic 

approach in physics. They want to unravel the “real” physics behind a complex process. To 

unravel the physics behind climate, one enters often into the world of climate modelling with 

great disadvantages due to lateral and vertical resolution of grid cells and temporal resolution of 

the finite element techniques used. The real physics “happens” at a scale of a few mm’s and 

instantaneous in comparison with time steps in GCM’s (impact of gravity, heat and mass 

transport). That raises “discussions” about assumption of LTE or non-LTE regarding 

incorporation of radiation transfer processes in those models. 

Contrary to the partly 4D vectorially nature of the mass and heat transfer equations of GCM, a 

simple scalar cooling function in the autonomous regulatory process, enables to describe the 

missing link between the observed temperature and transport of required heat. The paper shows 

that this works for given locations and date.  

The phase changes of water are instrumental to heat transport to and from the skin and 

troposphere. The Wec function parameter Td  is chosen to be the “dew point” of water. However, 

this does not prove that this likely attractor function must be also the only function possible. 

Strictly mathematically any function with the required averaged cooling does the job. Tests 

shows, using the Python code, that simple functions like sine of cosine functions also work. Only 

the cooling in situ has been studied. Complexity of heat transport to and from different latitudes 

is not studied and may need adapted or additional attractors to study further the autonomous 

regulatory processes of the water planet. 

 


